Spectral radius and Hamiltonian properties of graphs
نویسندگان
چکیده
منابع مشابه
Spectral Results on Some Hamiltonian Properties of Graphs
Using Lotker’s interlacing theorem on the Laplacian eigenvalues of a graph in [5] and Wang and Belardo’s interlacing theorem on the signless Laplacian eigenvalues of a graph in [6], we in this note obtain spectral conditions for some Hamiltonian properties of graphs. 2010Mathematics Subject Classification : 05C50, 05C45
متن کاملOn Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs
Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...
متن کاملWalks and the spectral radius of graphs
Given a graph G, write μ (G) for the largest eigenvalue of its adjacency matrix, ω (G) for its clique number, and wk (G) for the number of its k-walks. We prove that the inequalities wq+r (G) wq (G) ≤ μ (G) ≤ ω (G) − 1 ω (G) wr (G) hold for all r > 0 and odd q > 0. We also generalize a number of other bounds on μ (G) and characterize pseudo-regular and pseudo-semiregular graphs in spectral terms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear and Multilinear Algebra
سال: 2014
ISSN: 0308-1087,1563-5139
DOI: 10.1080/03081087.2014.947984